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Calculations have been performed for the inviscid hypervelocity flow of nitrogen past 
a 15" semi-angle sharp cone at an incidence of 30", at an enthalpy sufficiently high to 
produce dissociation/recombination chemistry downstream of the bow shock wave. A 
spatially second-order-accurate scheme for the numerical solution of the inviscid Euler 
equations was used combined with the Lighthill-Freeman model of the non- 
equilibrium ideal dissociating gas. The computational method has been used as a 
'numerical wind tunnel' in order to gain understanding of the interaction between the 
gas dynamics and the finite-rate gas chemistry. Inviscid flow has been considered to 
ensure that the only physical lengthscales in the flow are those associated with the 
chemical reactions. It was found that a chemical lengthscale L, based on the local 
dissociation length behind the shock on the windward plane of symmetry is an 
important governing parameter of the flow. However, as the flow lengthscale becomes 
large and the flow approaches the limiting case of equilibrium chemistry, L, is not the 
dominant chemical lengthscale. This is particularly true of the leeward flow, which 
contains a shock-vortex structure. A simple modelling technique has been used to 
determine a more appropriate lengthscale, Lv, for the leeward flow as the equilibrium 
limit is approached. This lengthscale is based on the expected equilibrium conditions 
behind the cross-flow shock. 

1. Introduction 
There are now various proposals for the design and construction of hypersonic 

aerospace planes powered by air-breathing engines. The flight envelope into low Earth 
orbit will be very different from that of a rocket-powered vehicle and will include 
sustained periods of nearly level flight at velocities great enough to induce chemical 
dissociation and recombination of air in the external flow. The endothermic 
dissociation reaction will absorb a large portion of the stagnation enthalpy and this 
energy can be released in another part of the flow by the reverse, exothermic 
recombination reaction. During re-entry to the Earth's atmosphere at a high angle of 
attack the chemically active region will extend to the leeward body surface, changing 
the aerodynamics of the vehicle significantly. A comparison of timescales for finite-rate 
chemistry and gas flow past the body (Stalker 1989) indicates a range of possible aero- 
thermodynamic conditions from chemically frozen flow through a regime of non- 
equilibrium between the dissociation and recombination reactions, to equilibrium flow 
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where local chemical equilibrium can be achieved within each fluid particle in times 
much smaller than the time it takes the fluid to traverse the vehicle. These regimes of 
interaction between aerodynamics and gas chemistry are little understood for three- 
dimensional flows. 

Here we study the hypervelocity flow about a sharp cone aligned at an angle of 
attack to the free-stream flow direction. This simple geometrical configuration gives 
rise to a complex flow containing vortices in the leeward flow. While it is certain that 
the fluid viscosity will have a profound effect on the leeward vortex system via a 
shock-boundary layer interaction, it is our purpose here to study the interaction of 
chemical reactions in the fluid with the gas dynamics in the outer flow by means of a 
simple model. Hence we consider here only inviscid flow, leaving consideration of the 
effects of finite viscosity for later study. 

The general structure of hypersonic inviscid flow about a cone at incidence has been 
demonstrated by the calculations of Marconi (1989) and is illustrated in figure 1. For 
a perfect gas with a constant ratio of specific heats y (i.e. with all chemical reactions 
inactive or ‘frozen’), the flow is conical. A bow shock is followed by weakly rotational 
flow in the shock layer adjacent to the windward cone surface. The gas expands rapidly 
on the leeward surface and then is compressed as it approaches the leeward plane of 
symmetry. For sufficiently large angle of attack at hypersonic Mach number the flow 
is supersonic on the leeward surface and a pair of cross-flow shocks is produced where 
the flow turns to become approximately parallel to the leeward plane of symmetry. The 
resulting large entropy gradient along the leeward side of these shocks generates 
sufficient vorticity to separate the flow from the cone surface, producing a complex 
flow structure containing one or more pairs of compact vortices. Marconi (1989) shows 
that, owing to entropy discontinuities present at the separation line, the separation 
must take the form of a vortex sheet embedded in a background rotational flow. In an 
appropriate conical projection, the separation streamline, for strictly inviscid flow, 
makes a finite angle with the cone surface. This shock-vortical structure would be 
modified by the presence of the boundary layer on the cone surface and, in that case, 
separation may occur closer to the windward side; but as we have said this will not be 
considered further here. 

We have used a computational fluid dynamics method, the Equilibrium Flux 
Method or EFM (Pullin 1980), to calculate the chemically reacting flow and to 
investigate the scaling laws for the interaction of the dissociation reactions, 

N, + N e  2N+N (1 a) 
and N, + N, - 2N + N,, (1 b) 
with the leeward vortical flow. Nitrogen is chosen as the ‘test gas’ because it allows us 
to study the interaction of aerodynamics and the simplest possible yet fundamentally 
important non-equilibrium chemical effects typical of high-enthalpy air flow. 

Experiments on hypervelocity flow past bodies of revolution at incidence are being 
performed (Krek, Hannemann & Pullin 1989) in the T4 shock-tube wind tunnel 
(‘shock tunnel’) at the University of Queensland and in our calculations the range of 
free-stream conditions encompasses conditions typical of those that can be produced 
in the test section of the shock tunnel. We are interested in flows that can be produced 
in experimental facilities and have used the numerical method as a ‘numerical wind 
tunnel’. We are not directly concerned with the question of how the results found in 
a typical high-enthalpy shock tunnel correspond to flight conditions in the atmosphere; 
this has been considered by Stalker (1989). However, there may be some limitations to 
the proposed scaling laws, which are based on the assumption that the recombination 
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reaction rate is negligible, an assumption that may not be justified because of the high 
density of the test flow (Macrossan 1990). 

In earlier work Macrossan (1989, 1990) calculated the flow about a two-dimensional 
blunt body with non-equilibrium chemistry using a spatially first-order-accurate 
version of the numerical method, and preliminary results for three-dimensional cone 
flow (Macrossan, Pullin & Richter 1989) have been presented. A second-order version 
of EFM (Macrossan & Pullin 1990) is used here, in which linear gradients of flow 
properties are assumed across each cell in each direction of the three-dimensional 
computational grid. The gradients are taken equal to the one-sided gradient that has 
the smallest absolute value, or zero when the one-sided gradients differ in sign. This is 
the so-called min-mod technique (van Leer 1979; Yee 1989). The second-order version 
of EFM gives good resolution of the cross-flow shock and the shock-induced vortex 
system in the leeward flow. 

In the following sections we describe the chemical model and the free-stream 
conditions used in our calculations. Then we identify the dimensional groups on which 
the computed flow depends. Next we give details of the computational grid and 
procedures, and test the computational method for a special case where our three- 
dimensional calculations should produce conically symmetric flow. Next the nature of 
the cone flow is discussed and the importance of a chemical lengthscale based on 
expected conditions behind the windward shock is shown. We then consider in more 
detail the flow behind the leeward cross-flow shock and show that it displays a 
complicated dependence on the windward chemical lengthscale. Finally, a dominant 
lengthscale for the leeward flow, based on the expected conditions behind the cross- 
flow shock, is determined from a simple numerical modelling technique. 

2. Chemistry model 
We use Lighthill's (1 957) ideal dissociating gas with the appropriate chemical- 

reaction-rate equation (Freeman 1958) to represent the chemical dynamics of nitrogen. 
The law of mass action, which relates the chemical composition to the temperature and 
density at equilibrium, is 

where 

is the mass fraction of dissociated nitrogen, T is the temperature of the mixture of N 
and N,, 8, = 113200 K is the dissociation temperature, and p,, the characteristic 
density, is an approximation to a collection of terms in the partition functions for N 
and N, which varies only slightly with temperature and is taken by Lighthill to be a 
constant, having a value of 130 g r n ~ m - ~ .  The assumption that pd is constant is 
equivalent to representing the sum of the equilibrium values of energy of electronic 
excitation of N and vibrational excitation of N, by the energy of a single degree of 
freedom for N, which is fully excited at all temperatures. 

The equation of state for the mixture of N and N, is 

p = p(l +a)RT, (4) 
wherep is pressure and R is the ordinary gas constant for N,. The ratio of specific heats 
y for the ideal dissociating gas, assuming the composition a is fixed, is given by 

y = i(4 +a) 
and the enthalpy is given by 

h = R[a0,+(4+a) T ] .  
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The net production rate of N can be expressed as the difference between the total 
dissociation rate (daldt), and the total recombination rate (daldt),. Thus 

where W is the molar mass (molecular weight) of N, and C,, C,, 71 and 7, are 
constants. Note that C(a, T )  takes account of the different third-body efficiencies in 
( l a  ) and (lb). We have used the values C, = 8.5 x (c.g.s. units), 71 = -2.5 for 
N as the third body, and C, = 2.3 x loz9 (c.g.s. units), 7, = -3.5 for N, as the third 
body. These values were found experimentally by Kewley & Hornung (1974). 

3. Free-stream conditions 
The free-stream conditions used for the numerical simulations reported here are 

shown in table 1. Two values of flow energy and two values of flow density have been 
used to give four sets of free-stream conditions. In the two high-energy conditions the 
stagnation enthalpy, 

(1 1) 
is approximately 28 MJ kg-l and these conditions are labelled H28 and L28. For the 
two low-energy flows, labelled H22 and L22, Hn is approximately 22 MJ kg-l. The 
free-stream density for conditions L28 and L22 is approximately equal to the density 
of the Earth's atmosphere at an altitude of 50 km while for H28 and H22 the density 
is an order of magnitude larger and is typical of the density obtained in the T4 shock 
tunnel. We have made 

which is the Mach number based on the speed of sound in the free stream (for frozen 
chemistry), approximately 5 in each case. 

We have taken the free-stream flow to be in chemical equilibrium, which is not true 
of laboratory-produced flows. The rapid expansion of the test gas in the nozzle of a 
shock tunnel will produce a test flow that is about 10 % dissociated. However, earlier 
work (Macrossan 1990) has shown that the typical test flows, at least for a blunted flat 
plate at an angle of attack, are not greatly different from those that would be produced 
if the free stream were in chemical equilibrium with a low degree of dissociation. 

Except for the test cases discussed in § 5 ,  all calculations were performed with a cone 
semi-angle 8 = 15" and an angle of attack S = 30". 

H -1 2 
n - + R[a, 8, + (4 +a,> 7 3 ,  

M ,  = u,/[+(4 + a,) (1 + a,) RT,];, (12) 

4. Chemical effects (scaling) 
We have eliminated the effects of many possible flow parameters by investigating the 

simple case of inviscid flow, a fixed chemical model and a free-stream flow in chemical 
equilibrium. Further simplification is achieved by considering a circular cone with a 
fixed cone semi-angle 8 with its axis at a constant angle of attack S to the free-stream 
velocity. Let 4 denote the azimuthal angle from the windward plane of symmetry and 
let the origin of x-axis be at the cone tip and its direction be along the body axis, as 
shown in figure 1. We expect that some flow property such as the surface pressure p s  
will display a functional dependence such as 
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FIGURE 1. Conical flow of an inviscid gas about a cone flying at  an angle of attack 
(after Marconi 1989). 

H28 L28 

Velocity u, (km s-') 6.696 6.541 

Temperature T, (K) 4469.0 4232.0 
Dissociationt a,  0.0113 0.0176 
Stag. enthalpy H, (MJ kg-') 28.12 27.03 
Mach number$ M ,  5.000 5.000 
Chemical length11 L, (m) 0.020 0.248 

Notes: 

Density p, kg m-3) 9.974 1 .ooo 

Value is at chemical equilibrium. 
1 Based on the 'frozen' speed of sound, see (12). 
/ I  Reaction length behind windward oblique shock, (19). 

TABLE 1. Free-stream conditions 

H22 

5.954 
9.998 

0.000 493 

5.000 
0.075 

3581.3 

21.99 

L22 

5.912 
1 .ooo 

0.001 26 

4.995 
0.827 

3534.9 

21.18 

where 

and 

L, = u,  W/Od c, @) 

L, = u, W/(p, c, 02) 

are the chemical lengthscales associated with the two possible collision partners in (1). 
Notice that M ,  and a, do not appear directly in the list of arguments since if pm, T, 
and u,  are given the condition of chemical equilibrium in the free stream, (2), is 
sufficient to determine both these properties. 

In the double limit x /L ,  and x /L ,  +- 0, the flow is chemically frozen and the flow 
state does not depend on x. Because of the symmetry of the conical body the flow is 
conically symmetric in this limit. At the opposite extreme, when x / L ,  and x /L ,  + co 
the flow is again independent of x and is again conically symmetric. For finite and non- 
zero values of x /L ,  and x /L ,  the flow is not conically symmetric. One aim of the 
present study is to search for a single chemical lengthscale which combines the effects 
of not only L, and L, but all the parameters in (13) to which the flow is sensitive. 
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Other measures have been used to characterize the flows. A non-dimensional 
measure, x, of the vortex size at a distance x from the cone tip should be some function 
of the free-stream conditions such as 

We also consider the integrated surface pressure force, or rather the corresponding 

x = ' ( x / L l ?  x /L , ,  P m / p d ,  U L / ( R O d ) ,  Tm/Od). (16) 

pitching moment coefficient, 
cz = M,/(iP, UL xA5)7 

where M ,  is the magnitude of the pitching moment (about the z-axis through the cone 
tip) which acts on that portion of the cone up to the distance x. A ,  = n(x tan 0)' is the 
cross-sectional area of the cone at station x. We expect that this coefficient should be 
a function of the free-stream conditions as follows : 

'2 = x ( x / L l ,  x / L 2 >  P m / P d ,  u L / ( R O d ) ,  T,/Od)' (18) 

5. Body and grid geometry, details of computations 
Because of the flow symmetry about the (x,y)-plane, only one half of the flow 

( z  > 0) was considered. A body-fitted grid of Nl x N2 x N3 cells was used, where Nl 
is the number of cells along the body (the x-direction), N2 is the number normal to 
the body surface and N3 is the number between the windward and leeward planes of 
symmetry in the azimuthal direction. The cells were concentrated near the cone surface 
and near the leeward plane of symmetry. The cell size in the x (or Nl)-direction varied 
in order to keep the cell width an approximately constant fraction (0.06) of the local 
cone radius. 

It was not possible to resolve the starting flow at the cone tip to the same accuracy 
as the flow downstream. An initial calculation for a short cone was performed with a 
grid of Nl x N ,  x N3 = 5 x 24 x 50. A ' time-marching' mode of EFM was used in this 
initial grid in which the conservation equations were integrated forward in time, in 
steps of At, from impulsive initial conditions until steady state was reached. The 
downstream conditions from this grid were then transferred to a new grid which 
extended far downstream. In this grid the numbers of cells in the cross-flow directions 
were N ,  = 48 and N3 = 100 and a 'space-marching' mode of EFM was used. In this 
mode steady state was found on successive slices (sub-grids) using the upstream 
conditions found previously in the calculations. The moving space-marching sub-grid 
was two cells wide in the marching direction and was stepped downstream one cell at 
a time, so that only the conditions in the upstream cell were saved at each step. The 
ratio of the time step At to the smallest fluid or wave transit time across any cell, for 
both time-marching and space-marching, was kept in the range 0.6-0.7 for all 
calculations reported here. 

Space-marching can only be successful if the flow is everywhere supersonic and it is 
best if the gradients in the marching direction are small, as is true for the cone flow. 
For chemically active flow the space-marching was continued to large distances 
downstream. As a matter of convenience this was done in a series of separate runs, each 
of which marched the solution about thirteen steps downstream and required a CPU 
time between 15 and 22 hours on an IBM RISC 6000/530 workstation. 

As a test of EFM we consider some results for a fully three-dimensional calculation 
in which the chemical composition was frozen. In this case our three-dimensional 
calculations should yield a conical flow. The effective y was 1.4, the free-stream Mach 
number was M ,  = 5, the cone semi-angle was 0 = 10" and the angle of attack was 
S = 20", conditions that correspond to those in the calculations of Marconi (1989) 
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FIGURE 2. Contours of log (p /p , )  as calculated by EFM for perfect gas flow with M ,  = 5, 8 = lo", 
6 = 20". Grid size; 3 x 24 x 50,22 x 48 x 100. Contours are shown on the cone surface, the windward 
and leeward planes of symmetry and a surface roughly normal to the rear surface of the cone. 

who used a numerical method specialized for the conical flow of a perfect gas. Figure 2 
shows some typical EFM results and, as expected, the flow state is conically symmetric 
(except very near the cone tip), that is the state is constant along any ray emanating 
from the tip of the cone. Figure 3 shows a detailed view, looking along the axis of the 
cone, of the conically projected stream surfaces where they roll up to form a vortex 
near the leeward plane of symmetry. The cone surface appears as a circular arc. The 
image was constructed from the data in a cross-flow section of the space-marching grid 
after 24 steps in the x-direction. This vortex is very similar to that found by Marconi 
( 1 989). 

Figure 4 shows, for the same test calculation, the surface pressures, as calculated by 
us and Marconi, on the leeward surface of the cone in the vicinity of the leeward plane 
of symmetry. The EFM results are for two different grid resolutions; in both cases the 
time-marching grid (N,xN,xN,) at the nose was 5 x 2 4 ~ 5 0 ,  whereas the space- 
marching grid was 24 x 50 in the cross-flow direction (N ,  x N,) in one case and 48 x 100 
in the other. Marconi's calculation method employed a shock-fitting procedure to 
determine the position of the leeward cross-flow shock and hence his results show the 
shock as a discontinuity, whereas EFM produces a shock smeared over a few cells. 
Limitations of computational power prevented us from investigating the effects of a 
more refined grid in the cross-flow directions but, if we take Marconi's results (which 
were obtained on a somewhat finer computational grid) as the 'exact' solution, it is 
clear from figure 4 that any grid-dependent effects in the EFM fluid-flux calculations 
are small, outside the smeared shock, for our most refined grid. 
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Z 

FIGURE 3. Conical projection of cross-flow streamlines near the leeward plane of symmetry. 
Perfect gas, conditions as for figure 2. 

6. Chemically reacting flow 
Hornung (1 972) found by considering calculated shock stand-off distances ahead of 

a sphere in hypervelocity flow of nitrogen, that a characteristic reaction length 
immediately behind the normal shock was an important governing parameter and his 
experimental results confirmed this (see also Macrossan 1990). For the flow being 
considered here, the equivalent reaction rate is that behind the oblique shock attached 
to the tip of the sharp cone. Therefore the characteristic reaction length in the shock 
layer may be taken as 

where (da/dt),$ is evaluated from (7)-( 10) for the density, temperature and composition 
behind an oblique shock (with the chemical reaction frozen across it). We have 
assumed that the characteristic windward shock is one inclined to the free-stream 
velocity at 8+ S = 45", which is the sum the cone half-angle and the angle of attack. 
Since a ,  is very small the net reaction rate ( d a l d t ) ,  is virtually the same as the rate 
for the forward (dissociation) reaction alone but in fact we have not made this 
approximation when evaluating L,. 

Hornung (1972, 1976) showed that the two-dimensional flow behind a curved shock 
wave contained a region of intense reaction close to the shock followed by a large 
region of chemically frozen flow. The reaction region is localized because the forward 
(dissociation) reaction rate, (8), is an exponential function of temperature and there is 

(19) L, = u,/(da/dOs, 
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FIGURE 4. Cone surface pressure near the leeward plane of symmetry. Perfect gas, conditions as for 

48 x 100 cross-flow grid. Conical 'shock fitting' method (Marconi 1989): ~ , 89 x 89 grid. 
figure 2. EFM, three-dimensional calculations : . . .  + . . . .  24 x 50 ( N ,  x N3) cross-flow grid ; ........ 

0 ' 1  I I I I I I I I I I 

0 5 10 
SIX0 

4,. Free-stream conditions H28 in table 1. 0 = 15", 8 = 30", ~ , x o / ~ ,  = 4.1 x 10-3, 4, = 0.22; 
FIGURE 5.  Dissociation fraction a along streamlines crossing the shock at x, and azimuthal location 

___ . xo/L, = 4.1 x lo-', #, = 0.22; ..... ., x 0 / L ,  = 2.5 x #, = 0.24; -----, X,/L, = 3.9, 
$,, = 0.25. L, is given by (19). 

a rapid fall in temperature which accompanies the endothermic dissociation reaction. 
Hornung (1988) and Stalker (1989) have used the term 'quenching' to distinguish this 
rapid reduction of the dissociation rate from the 'freezing' of the recombination 
reactions which is caused by a decrease in density and is a familiar phenomenon seen 
in the nozzle flow of test facilities. 
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FIGURE 6. (a) Dissociation rate (daldt), of (8), and (b) recombination rate (daldt), of (9), along 
streamlines corresponding to those for figure 5. (daldt), as in (19). 

Figure 5 shows the variation in chemical composition a, behind the windward shock, 
along some selected streamlines which cross the windward shock at an azimuthal angle 
$o z 12" from the windward plane of symmetry but at different distances, xo, from the 
cone tip. Figure 6 shows the variation in the dissociation and recombination rates of 
(8) and (9) along these same streamlines, as well as a pictorial view of some typical 
streamlines in the flow near the cone surface. The origin of s, the distance along the 
streamline, has been set where the streamline crosses the shock and the streamline has 
been followed until just after it crosses the leeward cross-flow shock. The streamline 
distance has been normalized as s/xo and the slightly different (normalized) lengths 
travelled between the windward and leeward shocks are an indication that the 
streamline patterns in the shock layer are different at different distances from the cone 
tip. The absolute distance travelled between these shocks, which is roughly proportional 
to the starting coordinate xo, determines in general how far the dissociation reaction 
can proceed behind the shock and it can be seen in figure 5 that the dissociation after 



Inviscid hypervelocity f low past a cone 79 

/ /-\ \ 

(4 (b) (4 (4 
FIGURE 7. Temperature contours, TIT,, in a cross-section of the flow. Free-stream conditions H28, 

table 1. (a) x / L ,  = 0.03, (b) x / L ,  = 0.89, (c) x / L ,  = 18.8, (4 x / L ,  = 1829. 

the shock rises to a different value in each case. There is some dissociation cooling 
associated with this rise and the amount of this dissociation cooling (which is 
proportional to the rise in a) increases at increasing distance from the cone tip. For the 
streamline starting furthest downstream, at xo/L,  M 3.9, which crosses the leeward 
shock at x,/L, M 39, the rise in cy. and the consequent dissociation cooling is enough to 
reverse the reaction and bring about a fall in 01. Closer to the cone tip the dissociation 
remains virtually constant along the streamline. 

Superimposed on any dissociation cooling there is a fluid dynamic cooling associated 
with the expansion of the flow towards the leeward surface. This cooling, as opposed 
to the chemical cooling, will be virtually independent of the distance from the cone tip. 
Both types of cooling ‘switch off’ the reaction rate but an indication of which effect is 
dominant is given by the variation in reaction rates along the streamlines, which is 
shown in figure 6(a) .  In all cases the dissociation rate decreases by many orders of 
magnitude as the flow expands towards the leeward surface. However, for the 
streamlines beginning furthest downstream there is an even more rapid dissociation 
cooling immediately behind the shock. The first indication of this quenching effect, to 
use Hornung’s term, can be seen on the streamline starting at xo/L,  z 0.38 and we shall 
see later that at this value of x / L ,  the influence of the chemical reactions on the flow 
is most pronounced. The quenching is even stronger at xo /L ,  M 3.9. 

The recombination rates (da/dt), are shown in figure 6(b). The recombination rate 
rises through the shock and, in each case, falls in the expansion around the body much 
less rapidly than the dissociation rate because it is less sensitive to temperature; see (8) 
and (9). By comparing the dissociation rate with the corresponding recombination rate, 
the regions of net dissociation and net recombination can be determined and it is found 
that the recombination region occupies a greater portion of the streamline as the 
distance downstream increases. At x,/L, M 0.004, recombination does not begin until 
s / x o  M 6 and finishes at the leeward shock, while for xo/L,  z 0.047 the recombination 
region begins closer to the windward shock, at s / x ,  M 4.2. In this case the dissociation 
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(4 (b) 

FIGURE 8. Temperature contours, TIT,, in a cross-section of the flow. Free-stream conditions H28, 
table 1. (a) Frozen chemistry, (b) equilibrium chemistry. 

and recombination rates are virtually equal behind the leeward shock, that is, chemical 
equilibrium is established with some slight deviations either way at different points 
along the streamline. Further downstream, at x , / L ,  z 0.38 and 3.9 the recombination 
region begins at s/x ,  z 2.5 and 0.15 respectively. 

It should be noted here that there is apparently some cross-streamline diffusion of 
chemical species immediately behind the leeward shock. This can be seen by the 
decrease in a behind the shock, which is not associated with any dramatic increase in 
the recombination rate behind the shock. This is a numerical error for a strictly Euler 
(diffusionless) flow but it must be emphasized that this diffusive decrease of a along the 
streamline does not involve a release of chemical energy into the flow. It does, however, 
involve a change, of less than 0.5% in the extreme, in the effective value of y in the 
vortical flow behind the cross-flow shock. 

Figure 7 shows the temperature contours on a cross-section of the grid at different 
distances x. Regions of rapid cooling, those where the contours are closely spaced, arise 
from the dissociating cooling effect and the regions of slower cooling arise from the 
expansion of the flow from the windward towards the leeward side of the cone. Close 
to the nose, at x / L ,  = 0.03, some dissociation cooling of the flow behind the shock near 
the windward plane of symmetry can be seen and at greater azimuthal angles from the 
windward plane of symmetry there is conventional expansion cooling. There is a large 
temperature gradient near the cone surface. It appears that this thermal ‘boundary 
layer’ is made up of streamlines which have crossed the shock close to the windward 
plane of symmetry at slightly different angles and have undergone different amounts 
of dissociation cooling before being expanded around the surface. 
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For x/L,  = 18.8 the dissociation cooling region has contracted towards the shock 
and there is an expansion-cooled region near the body surface. At a great distance 
downstream, x/L,  = 1829, the dissociation cooling region is very thin and almost 
merged with the shock. The expansion cooling region extends over most of the flow 
and is very similar to that at x/L,  = 0.03 except for the absence of the thermal layer 
close to the surface and for the fact that the slow exothermic recombination reaction in 
the expansion region has reduced the rate at which the temperature decreases. It is 
noticeable that the azimuthal extent of the dissociation cooling region behind the shock 
increases as it contracts towards the shock. 

It is instructive to compare the corresponding temperature fields for the frozen and 
equilibrium limits, which are shown in figure 8. The temperature gradients in the 
expansion are much smaller for the equilibrium flow, but the contour patterns are 
similar, particularly on the windward side of the cone and both differ from the contour 
patterns for non-equilibrium flow seen in figure 7. Notice that in the equilibrium 
calculations, the temperature never reaches the high value associated with frozen flow 
across the shock so there is no region of steep temperature gradient behind the shock. 
This is in accordance with what we would expect if the numerical method were able to 
resolve a discontinuous shock since such a shock would be followed by a discontinuity 
in temperature where the temperature would be reduced to the values appropriate to 
equilibrium conditions behind the shock. 

The shock stand-off distance A ,  on the windward plane of symmetry was determined 
at various distances downstream. The shock location was taken at the point of 
maximum temperature gradient normal to the cone surface in the windward plane of 
symmetry. The results are shown in figure 9(a). Following Hornung (1972) the stand- 
off distance is normalized as (A,/x) (p,/p,), where p,/p, is the expected density ratio 
across the frozen oblique shock at an angle of 8 + 8, but it happens that the density 
ratio is virtually the same for all our data. Data for the frozen and equilibrium limits 
have also been obtained and are shown in the figure at the minimum and maximum 
values of x. In the equilibrium limit, chemical equilibrium is enforced in each cell, after 
each flux calculation, while keeping the total energy in the cell constant. To obtain the 
frozen and equilibrium limiting values of d , /x  a computation on a grid such as that for 
figure 2 was performed for which the total number of cells in the x-direction was 
considerably less than for the calculations for large x, there being no point in 
continuing to march downstream once the initial starting flow at the nose has settled 
down into a conical flow. 

For chemically frozen flow the ratio A , / x  is virtually the same for all sets of free- 
stream conditions, reflecting the fact that the Mach number and y are almost the same 
in all cases. The onset of non-equilibrium is shown by the sudden decrease in the shock 
stand-off parameter at x/L,  z 0.04. The chemical length L, is evidently a good 
correlation parameter up to x/L,  z 2 at which point the data for different stagnation 
enthalpies separate. For the low-energy data there is a further separation at x/L,  z 10 
for the different densities, and the different limiting values are reached by x /L ,  z 200. 
For the high-energy data, the separation according to density and the approach to the 
equilibrium limits are at slightly higher values of x/L,  (20 and 300 respectively). 

In figure 9(b) we normalize the shock stand-off distance as 

(4-~,)/(~,-4, 
where d, and A ,  are the values found at the frozen and equilibrium limits respectively. 
While this normalization gives a reasonable overall correlation, the collapse of the data 
becomes slightly worse in the range 0.01 < x/L,  < 20. 
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FIGURE 9. Shock stand-off distance @,/p,) ( A J x )  on the windward plane of symmetry. Free-stream 
conditions in table 1 : V, H28; 0,  L28; A, H22; +, L22. (a) normalized against x ,  the distance from 
the cone tip and the density ratio, p,/p,, across a 45" oblique shock with chemistry frozen. (b) 
Normalized against A, and A,, the frozen and equilibrium limit values of A, found by computation for 
the corresponding free-stream conditions. 

We also consider the pitching moment about the cone tip, 

M ,  = (P,-p,)k-r i  x rsdAs, J 
where ri is the outward-pointing unit vector normal to an element of the cone surface 
dA,, p ,  is the pressure acting on that element, r, is the position vector from the cone tip 
to the element and k is the unit vector along the z-axis. The contributions to the 
integral in (20) can be separated into those from the windward surface (where u, ti < 0) 
and those from the leeward surface (where u;ri > 0). Figure 10 shows the data for the 
windward component of the pitching moment coefficient, 

G, w = M,, w l G P ,  .: XA,), 
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FIGURE 10. Integrated pitching moment coefficient, up to the distance x, for windward pressure forces 
only. Free-stream conditions in table 1: V, H28; 0,  L28; A, H22; +, L22. 

where Mz,w was evaluated from (20) with the area of integration confined to the 
windward surface of the cone. These data are more scattered than the data for the 
leeward component, Cz,l, which are shown later in figure 15, because the cells in the 
windward portion of the computational grid are larger than in the leeward grid. 
Nevertheless for each set of free-stream conditions there is sudden change in the 
behaviour of CZ+ at x /L ,  z 0.02, which is the point where the vortex size data 
indicated that the onset of chemical non-equilibrium occurs. There is a minimum in the 
pitching moment somewhere in the range 0.1 < x /L ,  < 0.4 followed by an increase to 
virtually constant values, for x /L ,  > 300, which are higher than the values found with 
the chemistry frozen. The relative decline in the pitching moment, as well as the limiting 
value for equilibrium chemistry, is different in each case. These data again show how 
the transition from the chemically frozen limit to the chemical equilibrium limit is not 
a simple one. The pitching moment is important for aerodynamic design and, as has 
been emphasized by Stalker (1989), consideration of the non-equilibrium nature of the 
flow is vital. 

It appears that the chemical length L, is an important parameter governing this flow; 
the maximum non-equilibrium effect, as shown by the windward component of the 
pitching moment coefficient (and also by the lift and drag coefficients which were 
not shown) occurs at x /L ,  - O(1) and the non-equilibrium regime is roughly 0.02 < 
x / L ,  < 300. In the limit of equilibrium chemistry the four different free-stream 
conditions considered produced different limiting values of shock stand-off distance 
and pitching moment. 

7. Leeward flow 
We consider now the effect of the non-equilibrium reaction rate on the more 

complicated flow on the leeward surface. Figure 11 shows vortex images for the cases 
of frozen chemistry, non-equilibrium chemistry, and equilibrium chemistry. These 
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FIGURE 11. Cross-flow vortex : (a)  equilibrium chemistry, (b) non-equilibrium chemistry 
( x / L ,  = 4.25), (c) frozen chemistry. Free-stream conditions for case H28 in table 1. 

vortex images were all constructed using the same numerical algorithm as that used to 
produce figure 3 .  Note that, since the reacting flow is not conically symmetric in this 
case, the resulting ‘streamlines’ in a cross-flow section of the grid (which are integral 
curves of the component of velocity normal to a ray from the cone tip) are not conical 
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, Frozen; FIGURE 12. Surface pressures for conditions corresponding to figure 11. ~ 

___  , non-equilibrium ( X / L , ~  = 4.25); . . . ., equilibrium chemistry. 

projections of stream surfaces. The marked change in the size and aspect ratio of the 
vortex can be seen for the three cases. Figure 12 shows the surface pressure beneath the 
vortices shown in figure 11 and here it is clear that the non-equilibrium flow is not 
simply intermediate between the limiting cases. 

The variation in the shock and vortex structure throughout the non-equilibrium 
regime can be seen in figure 13, which shows contours of the flow Mach number near 
the leeward plane of symmetry for four different values of x/L,. The azimuthal location 
of the cross-flow shock is different at different distances downstream but the shock 
shape is similar for values of x /L ,  of 0.03,0.89 and 18.8 in the non-equilibrium regime. 
Far downstream at x /L ,  = 1830, near the equilibrium limit, the kink in shock shape 
has almost disappeared and the Mach-number contours roughly follow the streamline 
shapes in the vortex (see figure 1 l), which implies that the Mach number varies little 
as the flow recirculates in the vortex. This is not so for the lower values of x/L,; there 
is a local maximum in Mach number at the leeward plane of symmetry and another 
local maximum at the cone surface. The latter corresponds to the local minimum in 
pressure seen in figure 12. By reference to figures 11 and 12 it can be seen that as the 
flow recirculates in the vortex it suffers alternate decreases and increases in Mach 
number. 

The vortex size can be measured by inscribing a rectangle, with sides parallel to the 
y- and z-axes, around the vortex. All sides of this rectangle can be tangential to the 
streamline of reversed flow closest to the cone surface which then recirculates and rolls 
up into the vortex. A convenient measure of the size of the vortex is H W / x 2 ,  where H 
and W are the height and width, respectively, of the largest possible tangentially 
inscribed rectangle. The data for vortex size for all computations are shown in figure 
14. Values shown at the extreme limits of x are for the frozen and equilibrium 
calculations. There is a sudden change in behaviour in the data for vortex size at 
x /L ,  E 0.1 and the data are well collapsed up to x / L ,  E 50. For x /L ,  > 300 for the 
high-enthalpy free-stream conditions there appears to be a very slow approach to the 
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FIGURE 13. Contours of flow Mach number in a cross-flow slice of the grid near the windward plane 
of symmetry. (a)  x /L,  = 0.03, (b) x /L ,  = 0.89, (c) x/L,  = 18.8, (6, x/L,  = 1829.3. Free-stream 
conditions for case H28 in table 1 .  

equilibrium limit. However, for the low-enthalpy data there seems to be an indication 
of a plateau in the data above the equilibrium limit. There is also some indication of 
a similar effect in the data shown later in figure 16 (a). Other data, shown in figures 9, 
10 and 15, would indicate, despite some scatter, that the calculations have been 
marched downstream far enough to reach the equilibrium limit. There must remain 
some doubt about the exact nature of the approach to equilibrium and whether 
different properties approach the equilibrium limit at significantly different rates. This 
would seem to be an extremely difficult question to resolve numerically. 

Figure 15 (a)  shows data for Cz, 1 ,  the leeward contribution to the pitching moment 
coefficient, which is derived from (17) and (20), with integration in (20) confined to the 
leeward cone surface. The onset of non-equilibrium flow after the upstream frozen flow 
behaviour is at x / L ,  x 0.4 and there is an immediate separation between the high- 
and low-energy data. This is followed by a further division of the data at values of 
x /Ls  x 5 for the low-energy flow and x /L ,  x 20 for the high-energy flow. The data 
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do not approach the equilibrium limit until x / L ,  > lo5. This can be seen more clearly 
in figure 15(b) which shows a normalized coefficient 

where C, and Cf are the values of Cz, at the limits of equilibrium and frozen chemistry 
respectively. 

The conclusion from the data for the leeward flow is that the chemical length L, is 
a useful normalizing parameter for detecting the onset of chemical non-equilibrium 
effects, which first become apparent at x / L ,  x 0.04. However, as equilibrium is 
approached the lengthscale L, is inadequate to characterize the leeward flow; this is 
shown particularly by the data for the leeward component of pitching moment in figure 
15. What is needed is some measure of how the conditions ahead of the leeward cross- 
flow shock are affected by the different free-stream conditions and the different lengths 
of reacting flow traversed by each fluid particle between the windward and leeward 
shocks. In the next section we use a simple numerical model to estimate the conditions 
ahead of the leeward shock at any distance from the cone tip. We then use these pre- 
shock conditions to estimate the conditions behind the cross-flow shock. Finally these 
post-shock conditions are used to determine an appropriate chemical lengthscale in the 
leeward flow. 

8. Chemical lengthscale in the leeward flow 
We can estimate the leeward flow conditions by extending a simple modelling 

technique developed by Krek et al. (1989). The method is to model the (slip) flow 
along the windward surface of the cone by assuming that the pressure at the surface 
is everywhere given by the local Newtonian pressure, p,(u,. f i)z for u, - ii < 0, where n 
is the outward-pointing normal to the cone surface. The velocity at the cone surface is 
given by the component of the free-stream velocity that is parallel to the surface. These 
assumptions are enough to determine a set of surface streamlines on the windward 
surface and to reduce the flow on every streamline to one with a known variation of 
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FIGURE 15. (a) Integrated pitching moment coefficient, up to distance x, for leeward pressure forces 
only. Free-stream conditions in table 1 : V, H28; @, L28; A, H22; +, L22. (b) Normalized pitching 
moment coefficient. Cf and C, are the values of Cz,L found by computation for the frozen and 
equilibrium limits and the corresponding free-stream conditions. 

pressure and speed along the streamline. The non-equilibrium chemical reactions can 
be advanced, subject to the pressure and speed constraints, to determine the flow on 
the windward surface uniquely up to the line separating the windward surface of the 
cone from the leeward surface. We refer to this line, where u;A = 0, as the 'lee line'. 

Next we assume that at the lee line the flow is further processed by a cross-flow shock 
which is normal to the surface and follows the direction of the lee line. The conditions 
behind this shock, which turns the flow roughly parallel to the leeward plane of 
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FIGURE 16. Pressure ratio across the leeward shock. Lr,t  is the chemical length in the leeward flow, 
(21). (a) From three-dimensional EFM calculations, free-stream conditions in table 1 : V, H28; 0 ,  
L28; A, H22; +, L22. (b) From one-dimensional model: ~ , H28; ---, L28 ; . . . . . ., H22; ---, 
L22. 

symmetry, can be determined. We have defined a local reaction length for the leeward 
flow as 

where (daldt), is the recombination rate of (9) evaluated for conditions of chemical 
equilibrium behind the cross-flow shock and u is the predicted magnitude of the post- 
shock velocity. The chemical equilibrium state has been taken as that resulting from an 
adiabatic relaxation of the initial frozen chemical state immediately behind the oblique 

Lr, 1 = u/(da/dt)r, (21) 
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FIGURE 17. Integrated pitching moment coefficient, up to distance x, for leeward pressures forces 
only. As for figure 15 except that the normalizing length is the recombination length in the leeward 
flow (Lr,c from (21)). 

shock, keeping the velocity constant. This lengthscale is a function not only of the free- 
stream conditions but also of distance from the cone tip. We have determined Lr,z 
numerically for each set of free-stream conditions and for any required distance 
downstream. 

Figure 16(a) shows the pressure ratio across the leeward shock against the distance 
downstream, normalized as x/L, ,  as determined from the EFM calculations. The pre- 
and post-shock pressures were taken as the minimum surface pressure before the cross- 
flow shock and the local maximum surface pressure immediately after the shock (see 
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figure 12). There is a sharp peak in the pressure ratio at x/L,, I M 0.01 for all free-stream 
conditions and there is a good collapse of the data in the range 0.01 < x/L,,, < 1. 
Figure 16(b) shows the pressure ratio across the ‘lee line shock’ as predicted by the 
simple one-dimensional model and the trends in these data are remarkably similar to 
those in the data from the three-dimensional calculations. 

The data for the leeward component of pitching moment, Cz,,, are shown in figure 
17(a) with the distance x normalized against LT,I. The collapse of the data is much 
better than for figure 15 where L, was used. Here the maximum pitching moment 
occurs at x/L,,, M 0.01 and the data for the same stagnation enthalpy but different 
densities are collapsed. This can be seen more clearly in figure 17(b) where the 
normalized coefficient 

is shown. 
W Z , ,  - ce)/(cf- C,) 

9. Conclusions 
The effects of the non-equilibrium nitrogen dissociation reactions on the inviscid 

flow about a sharp cone at an angle of attack have been investigated. This flow contains 
a complex shock/vortical structure on the leeward surface. The free-stream conditions 
considered were similar to those found in a typical high-enthalpy shock-tube wind 
tunnel. Strong chemical non-equilibrium effects on the aerodynamically important 
pitching moment coefficient were shown. No simple relations between the non- 
equilibrium flows and the limiting cases of frozen chemistry and equilibrium chemistry 
were found. 

To some extent the effects of the chemical reactions can be characterized by a single 
lengthscale, L,, associated with the reaction rate behind the windward shock. The onset 
of non-equilibrium effects occurs at x /L ,  - 0(1) for both the windward and leeward 
flow. The equilibrium limiting values of shock stand-off distance and the windward 
contribution to the pitching moment are reached at values of x / L ,  ranging from 20 to 
300. However, the leeward component of the pitching moment displays maximum non- 
equilibrium behaviour at these values of x/L,. In the leeward shock/vortical flow the 
equilibrium limit is not approach closely until values of x /L ,  > lo5. 

The leeward flow is, in effect, governed by the state of the flow just behind the cross- 
flow shock. We have extended a simple modelling technique (Krek et al. 1989) to 
predict this state and thus to determine a chemical lengthscale, Lr,L governing the 
leeward flow. That this lengthscale is important in the leeward flow has been shown by 
the collapse of the leeward pressure data shown in figure 16 and by the improvement 
in the collapse of the data for the leeward pitching moment coefficient in figure 17 over 
that given by the use of the lengthscale L, which is shown in figure 15. 
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